Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Biosci. j. (Online) ; 38: e38007, Jan.-Dec. 2022. ilus, tab
Article in English | LILACS | ID: biblio-1361406

ABSTRACT

Drought is one of the major constraints in durum wheat production in the Mediterranean Basin. In order to overcome this problem, the genetic transformation of durum wheat is one of the choices for improvement. However, the recalcitrance to Agrobacterium-mediated transformation in durum wheat (Triticum turgidum L.) is one of the factors limiting a successful genetic transformation. The aim of this study was to investigate the effect of explant type and acetosyringone concentration for the efficient Agrobacterium-mediated genetic transformation of three Moroccan durum wheat varieties (Amria, Chaoui, and Marouane). The mature embryos (intact, halved and pieces) were inoculated with Agrobacterium tumefaciens strain EHA101 harboring the binary vector pTF101.1 containing drought tolerance gene HVA1 from barley, and a selectable marker phosphinothricin (PPT) resistance (bar) gene. The explants were inoculated with A. tumefaciens (cell density OD650 at 0.7) at four different concentrations of acetosyringone (0, 100, 200, and 400 µM). The results showed that embryogenic calli from mature embryos showed higher regeneration and transformation than mature embryo halves and pieces. The integration of the transgene was confirmed by PCR amplification using primers specific to the bar gene, 2x35S promoter, and HVA1 gene. The transformation efficiency ranging from 0.33% to 2.33% was obtained in Amira variety using embryogenic calli and acetosyringone concentrations of 200 and 400 µM. The integration, as well as inheritance of the transgene, was confirmed by PCR amplification in T0 and T1 generations. This is the first report describing a genetic transformation of Moroccan durum wheat varieties via Agrobacterium tumefaciens.


Subject(s)
Transformation, Genetic , Triticum , Agrobacterium tumefaciens , Drought Resistance
2.
Acta Pharmaceutica Sinica B ; (6): 1500-1513, 2022.
Article in English | WPRIM | ID: wpr-929370

ABSTRACT

Artemisia annua is the main natural source of artemisinin production. In A. annua, extended drought stress severely reduces its biomass and artemisinin production while short-term water-withholding or abscisic acid (ABA) treatment can increase artemisinin biosynthesis. ABA-responsive transcription factor AabZIP1 and JA signaling AaMYC2 have been shown in separate studies to promote artemisinin production by targeting several artemisinin biosynthesis genes. Here, we found AabZIP1 promote the expression of multiple artemisinin biosynthesis genes including AaDBR2 and AaALDH1, which AabZIP1 does not directly activate. Subsequently, it was found that AabZIP1 up-regulates AaMYC2 expression through direct binding to its promoter, and that AaMYC2 binds to the promoter of AaALDH1 to activate its transcription. In addition, AabZIP1 directly transactivates wax biosynthesis genes AaCER1 and AaCYP86A1. The biosynthesis of artemisinin and cuticular wax and the tolerance of drought stress were significantly increased by AabZIP1 overexpression, whereas they were significantly decreased in RNAi-AabZIP1 plants. Collectively, we have uncovered the AabZIP1-AaMYC2 transcriptional module as a point of cross-talk between ABA and JA signaling in artemisinin biosynthesis, which may have general implications. We have also identified AabZIP1 as a promising candidate gene for the development of A. annua plants with high artemisinin content and drought tolerance in metabolic engineering breeding.

3.
Article | IMSEAR | ID: sea-188067

ABSTRACT

Identifying maize genotypes with favorable root architecture traits for drought tolerance is prerequisite for initiating a successful breeding program for developing high yielding and drought tolerant varieties of maize. The aims of the present study were: (i) to identify drought tolerant genotypes of maize at flowering and grain filling, (ii) to interpret the correlations between the drought tolerance and root architecture traits and (iii) to identify the putative mechanisms of drought tolerance via root system traits. An experiment was carried out in two years using a split plot design with three replications. The main plots were assigned to three water stress levels, namely: well watering (WW), water stress at flowering (WSF) and water stress at grain filling (WSG), and sub-plots to 22 maize cultivars and populations. Drought tolerance index (DTI) had strong and positive associations with crown root length (CRL), root circumference (RC) and root dry weight (DRW) under both WSF and WSG, a negative correlation with brace root whorls (BW), and positive correlations with crown root number (CN) under WSF and brace root branching (BB) and crown root branching (CB) under WSG. These root traits are therefore considered as putative mechanisms of drought tolerance. The cultivars Pioneer-3444, SC-128, Egaseed-77, SC-10 and TWC-324 showed the most drought tolerant and the highest yielding in a descending order; each had a number of such drought tolerance mechanisms. Further investigation should be conducted to determine the underlying root mechanisms contributing to the selection of water-efficient hybrids of maize.

4.
Biosci. j. (Online) ; 33(6): 1474-1484, nov./dec. 2017. graf, tab
Article in English | LILACS | ID: biblio-966482

ABSTRACT

The purpose of this study was to estimate the phenotypic correlations between 14 traits obtained in a thematic core collection of upland rice for drought tolerance and partition them into direct and indirect effects by path analysis. Two experiments were carried out (with and without water stress). One hundred samples were evaluated in a triple 10x10 lattice design. The plot was formed by four rows, 3.0 metres long, spaced at 0.35 m. The plot useful area was constituted by two central rows of 2.0 m in length, totalling 1.4 m2, where data from 14 traits were collected, five from the root system and nine from the aerial part of the plant. Of the evaluated traits, spikelet sterility was the main grain yield determinant, presenting relevant negative correlations of -0.77 and -0.59 in environments with and without drought stress, respectively. The partitioning of spikelet sterility correlations presented negative direct effects on grain yield in environments with (-0.60) and without (-0.62) water stress, corroborating the negative correlations between these traits. The obtained data confirmed that spikelet sterility is an important variable for the selection of rice strain submitted to water deficit. Partial correlation coefficients indicated that only 70.33% in the environment with stress and 50.30% in the environment without stress of grain yield variation were phenotypically explained by variables considered in path analysis, thereby showing the complexity of the selection for drought-tolerant rice.


O objetivo desse trabalho foi estimar as correlações fenotípicas entre 14 características obtidas em uma coleção nuclear temática de arroz de terras altas para tolerância à seca e desdobrá-las em seus efeitos diretos e indiretos por meio da análise de trilha. Foram conduzidos dois experimentos (com e sem estresse hídrico). Avaliou-se 100 materiais no delineamento experimental em látice triplo 10x10. A parcela foi formada por quatro linhas de 3,0 metros de comprimento espaçadas de 0,35 metros. A área útil da parcela foi constituída pelas duas linhas centrais de 2,0 metros de comprimento, perfazendo 1,4 m2 de onde foram coletados dados de 14 características sendo, cinco do sistema radicular e nove da parte aérea da planta. Das características avaliadas, esterilidade das espiguetas foi a principal determinante da produtividade de grãos apresentando correlação negativa de elevada magnitude de -0,78 e -0,59 nos ambientes com e sem estresse de seca, respectivamente. No desdobramento das correlações esterilidade das espiguetas apresentou efeitos diretos negativos na produtividade de grãos nos ambientes com (-0,60) e sem (-0,62) estresse hídrico, corroborando as correlações negativas entre estas características. Os dados obtidos enfatizaram que a esterilidade das espiguetas é uma variável importante para a seleção de linhagens de arroz submetidas à deficiência de água. Os coeficientes de determinações parciais indicaram que apenas 70,33% no ambiente com estresse e 50,30% no ambiente sem estresse da variação da produtividade de grãos foram explicados, fenotipicamente, pelas variáveis consideradas na análise de trilha evidenciando a complexidade da seleção para tolerância à seca em arroz.


Subject(s)
Phenotype , Oryza , Plant Roots , Dehydration , Droughts
5.
Br Biotechnol J ; 2015 6(4): 174-190
Article in English | IMSEAR | ID: sea-174699

ABSTRACT

In an attempt to develop drought tolerant genotypes of bread wheat, two procedures, i.e., mutation and hybridization were used to induce new genetic variation. Selection for high grain yield/plant (GYPP) and other desirable traits was practiced in the M2 populations of 7 gamma irradiated genotypes and F2 populations of 15 diallel crosses among 6 genotypes of wheat under well watering (WW) and water stress (WS) conditions. Progenies of these selections (53 M3 and 109 F3 families) and their seven parents were evaluated in the field under WW and WS. Significant yield superiority of twelve families (7 M3 ’s and 5 F2 ’s) over their original and better parents, respectively under WS reached 74.71% (SF9). These putative drought tolerant families were assessed on the DNA level using SSR analysis. Fifteen SSR primers were used for PCR amplification of the genomic DNA of these 12 selections and their parents. The SSR analysis proved that the 12 families are genetically different from their 7 parents, with an average polymorphism of 86.67%. The genetic similarities (Gs) ranged from 30% to 88%. Both mutants SF3 and SF4 exhibited very low Gs (42 and 40%, respectively) with their common parent (Giza-168), indicating that gamma rays were very effective in changing the genetic background of Giza-168 towards high GYPP under WS conditions. SSR assay permitted the identification of seven unique bands (5 positive and 2 negative) for three drought tolerant wheat genotypes (SF3, SF4 and Aseel-5). These bands might be considered useful as markers associated with drought tolerance in bread wheat breeding programs.

6.
Indian J Biochem Biophys ; 2014 Feb; 51(1): 75-80
Article in English | IMSEAR | ID: sea-154239

ABSTRACT

Drought-tolerant cultivars and their phytochemical composition, which has a role in providing drought tolerance are gaining importance. In this study, rice bran oil and semi-purified oryzanol (SPO) obtained from five rice (Oryza sativa L.) cultivars, namely P1401 and PB1 (drought-susceptible) and N22, PNR381 and APO (drought-tolerant) were analyzed for the γ-oryzanol content, an antioxidant present in considerable amount in the rice bran. The higher level of γ-oryzanol and its antioxidant activity was observed in drought-tolerant cultivars (N22, PNR381 and APO) as compared to drought-susceptible (PB1 and P1401), suggesting the role of γ-oryzanol in drought tolerance, as antioxidants are known to play an important role by scavenging free radicals. The total antioxidant activity of γ-oryzanol might be attributed to 24-methylene cycloartanyl ferulate, a major component of γ-oryzanol. By enhancing the level of active oryzanol components identified in this study by genetic and molecular means could impart increased drought tolerance.


Subject(s)
Antioxidants/metabolism , Droughts , Oryza/cytology , Oryza/metabolism , Oryza/physiology , Phenylpropionates/isolation & purification , Phenylpropionates/metabolism , Plant Oils/metabolism
7.
Article in English | IMSEAR | ID: sea-157275

ABSTRACT

The present study was undertaken to ascertain the morphological responses of a groundnut cultivar K-134, under different water stress regimes characterized as control, mild, moderate and severe stress represented by 100, 75, 50 and 25% soil moisture levels respectively for eight days. Root length increased over control at mild, moderate stress treatments and inhibited at severe stress conditions on all days of sampling. Severe stress treatments had caused significant inhibition in shoot growth on day-4 and 8. The fresh and dry weights of roots and leaves and leaf area decreased over control in all stress treatments except under mild stress on day-4. The changes in theses parameters were dependent on stress severity and duration.

8.
Braz. arch. biol. technol ; 56(5): 735-748, Sept.-Oct. 2013. graf, tab
Article in English | LILACS | ID: lil-689800

ABSTRACT

The objective of this study was to compare the gas exchange, photosynthetic capacity and water potential of sugarcane genotypes cultivated under water deficit conditions imposed during the initial growth phase. Experiments were performed in a greenhouse using two sugarcane genotypes namely: HoCP93-776 (drought susceptible) and TCP02-4587 (drought tolerant). Sixty days after planting, two different water treatments were applied (i.e., with or without water deficit). At 0,30 and 60 days after the treatment, gas exchange variables were evaluated for their relationship with water use, intrinsic instantaneous water use efficiency and instantaneous carboxylation efficiency. The SPAD index, photosynthetic pigments, water potential and relative water content in the leaves were also analyzed. The genotype HoCP93-776 was more sensitive to drought treatment as indicated by the significantly lower values of SPAD index, photosynthetic pigments, water potential (Ψw) and relative water content (RWC) variables. The genotype TCP02-4587 had higher water potential, stomatal control efficiency, water use efficiency (WUE), intrinsic instantaneous water use efficiency (WUEintr), instantaneous carboxylation efficiency and photosynthetic capacity. The highest air vapor pressure deficit during the drought conditions could be due to the stomatal closing in the HoCP93-776, which contributed to its lower photosynthetic capacity.

9.
Biosci. j. (Online) ; 29(3): 543-552, may/june 2013. tab, ilus
Article in Portuguese | LILACS | ID: biblio-914535

ABSTRACT

Na cultura da soja, o déficit hídrico é um dos fatores limitantes à obtenção da máxima produtividade. A identificação de genótipos com capacidade de tolerância à seca é fundamental para a solução desse problema. Objetivou-se, neste trabalho, analisar a qualidade fisiológica e as respostas bioquímicas de cultivares de soja (MG/BR 46 Conquista, UFUS Carajás, UFUS Impacta, UFUS Riqueza e UFUS Xavante) submetidas ao estresse hídrico com soluções de PEG 6000 em diferentes níveis de potencial osmótico (0; -0,1; -0,2; -0,3 e -0,4 MPa). Avaliou-se a qualidade fisiológica das cultivares por meio dos testes de comprimento de plântulas e biomassa fresca e seca de plântulas. As respostas bioquímicas foram avaliadas pela detecção do ácido indol-acético, pelo conteúdo de sacarose e pelo transporte de água nas plântulas. A cultivar UFUS Riqueza apresentou os melhores desempenhos nos testes de qualidade fisiológica, conteúdo de sacarose, absorção e velocidade de absorção de água em plântulas. A cultivar UFUS Xavante mostrou a maior concentração de AIA e o maior massa de plântulas no teste de transporte de água.


In soybean culture water deficit is one of the most limiting factors to the maximum yield obtained. Genotypes identification with drought tolerance capacity is fundamental to solve this problem. The objective in this paper was analyze the physiological quality and physiological and biochemical responses of soybeans cultivars (MG/BR 46 Conquista, UFUS Carajás, UFUS Impacta, UFUS Riqueza and UFUS Xavante) submitted to water stress with PEG 6000 solutions in different levels of osmotic potentials (0; -0,1; -0,2; -0,3 and -0,4 MPa). Physiological quality of cultivars were evaluated by seedling length test and fresh and dry biomass. The biochemical responses were evaluated by detection of indol-acetic acid (IAA), by saccharose content and seedling water transportation. UFUS Riqueza presented the best performance in physiological quality tests, saccharose content, absorption and water absorption velocity in seedling. UFUS Xavante showed the highest IAA's concentration and the greater weight of seedling in water transportation test.


Subject(s)
Soybeans , Crop Production , Droughts , Agricultural Irrigation
10.
Electron. j. biotechnol ; 14(3): 3-3, May 2011. ilus, tab
Article in English | LILACS | ID: lil-602980

ABSTRACT

Increasing scarcity of irrigation water is a major threat to sustainable production of cotton (Gossypium hirsutum L.). Identifying genomic regions contributing to abiotic stress tolerance will help develop cotton cultivars suitable for water-limited regions through molecular marker-assisted breeding. A molecular mapping F2 population was derived from an intraspecific cross of the drought sensitive G. hirsutum cv. FH-901 and drought tolerant G. hirsutum cv. RH-510. Field data were recorded on physiological traits (osmotic potential and osmotic adjustment); yield and its component traits (seedcotton yield, number of bolls/plant and boll weight); and plant architecture traits (plant height and number of nodes per plant) for F2, F2:3 and F2:4 generations under well-watered versus water-limited growth conditions. The two parents were surveyed for polymorphism using 6500 SSR primer pairs. Joinmap3.0 software was used to construct linkage map with 64 polymorphic markers and it resulted into 35 markers mapped on 12 linkage groups. QTL analysis was performed by composite interval mapping (CIM) using QTL Cartographer2.5 software. In total, 7 QTLs (osmotic potential 2, osmotic adjustment 1, seedcotton yield 1, number of bolls/plant 1, boll weight 1 and plant height 1) were identified. There were three QTLs (qtlOP-2, qtlOA-1, and qtlPH-1) detected only in water-limited conditions. Two QTLs (qtlSC-1 and qtlBW-1) were detected for relative values. Two QTLs (qtlOP-1 and qtlBN-1) were detected for well-watered treatment. Significant QTLs detected in this study can be employed in MAS for molecular breeding programs aiming at developing drought tolerant cotton cultivars.


Subject(s)
Droughts , Gossypium/physiology , Gossypium/genetics , Quantitative Trait Loci , Adaptation, Physiological , DNA, Plant/genetics , Genetic Variation , Gossypium/growth & development , Chromosome Mapping/methods , Osmosis , Polymorphism, Genetic , Software
11.
J Environ Biol ; 2010 May; 31(3): 311-314
Article in English | IMSEAR | ID: sea-146368

ABSTRACT

The hydrodynamic behavior of two annual legumes (Trifolium angustifolium L. and Onobrychis caput-galli (L.) Lam.) under water shortage was studied in a rain shelter experiment. Seeds were collected from natural grasslands of northern Greece and were sown in pots. Two months after seedlings’ emergence, full irrigation (up to field capacity) and limited irrigation (40% of field capacity) were applied. During the vegetative period the leaf water potential and the relative water content were measured at seven day intervals in both treatments. T. angustifolium retained the lowest values of y both under full (-0.11 to -1.78 MPa) and limited irrigation (-0.16 to -2.90 MPa), while the highest values in both cases were those of O. caput-galli (-0.05 to -0.5 MPa). The results suggested that T. angustifolium was the species mostly affected by limited water supply. T. angustifolium seemed to display adaptation mechanisms to drought similar to those of perennial plants. O. caput-galli displayed a more isohydric behavior, by not altering its water potential under limited irrigation.

12.
Electron. j. biotechnol ; 8(2): 8-13, Aug. 2005. ilus, tab
Article in English | LILACS | ID: lil-640470

ABSTRACT

Chickpea, a lesser-studied grain legume, is being investigated due to its taxonomic proximity with the model legume genome Medicago truncatula and its ability to endure and grow in relatively low soil water contents making it a model legume crop for the study of agronomic response to drought stress. Public databases currently contain very few sequences from chickpea associated with expression in root tissues. However, root traits are likely to be one of the most important components of drought tolerance in chickpea. Thus, we have generated a set of over 2800 chickpea expressed sequence tags (ESTs) from a library constructed after subtractive suppressive hybridization (SSH) of root tissue from two closely related chickpea genotypes possessing different sources of drought avoidance and tolerance (ICC4958 and Annigeri respectively). This database provides researchers in legume genomics with a major new resource for data mining associated with root traits and drought tolerance. This report describes the development and utilization of the database and provides the tools we have developed to facilitate the bioinformatics pipeline used for analysis of the ESTs in this database. We also discuss applications that have already been achieved using this resource.

SELECTION OF CITATIONS
SEARCH DETAIL